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A Formal Syntax and Semantics for the GSPML
Language

John McDermott
Code 5542

October 17, 2005

1 Introduction
This report formally defines both a syntax and a semantics for the GSPML visual lan-
guage [1]. The syntax is defined with a hypergraph grammar [2, 3] because a hyper-
graph grammar suits the visual nature of GSPML. Structural operational semantics [4]
has been chosen as the primary semantic approach because it carries more information
about the visual constructs of GSPML. We also give a trace semantics for GSPML.
GSPML itself is motivated by shortcomings in the security modeling capabilities of
the model-driven architecture approach.

The concept of symbol can be subtle and we avoid it here by heuristic notions of text
symbols and diagram symbols. Symbols represent ideas; the symbols can be abstract
or concrete. Distinguishing text symbols from diagram symbols by their use as part
of an alphabet does not help, as we could define an alphabet of what were intuitively
diagram symbols. Definitions based on some restriction on bits used to represent text
symbols is also problematic in a world of scalable, colored, mappable fonts. In the
end we appeal to the intuitive notion of rectangular regions or simple geometric shapes
drawn as part of a diagram being the “diagram” symbols and the “text” symbols being
the ones used to name processes, events, and sets.

1.1 Motivation
The force of common practice is defining the model-driven-approach in terms of the
Object Management Group’s Model Driven Architecture or MDA. The core of MDA
is UML 2.0 [5]. Neither UML 2.0 (henceforth UML) or MDA treats security as much
more than a service; there are no models for security per se.

This raises the question of what security-specific aspects of software development,
if any, need visual modeling in this paradigm. This report argues that there are. Without
the necessary security-specific visual modeling, model-driven approaches will produce
no better security than present practice.

One of the most significant security-specific aspects of software development is the
security protocol. Security protocols are sequences of allowable interactions between
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principals. A principal is an entity that participates in a security system. Security
protocols are not necessarily about cryptography; some security protocols involve no
cryptography at all. A good security protocol has desirable consequences for every
possible trace; not all security protocols are good ones. For this reason, we want to be
able to define all possible traces in a graphical language.

The UML candidates for visual modeling of security protocols all have shortcom-
ings. Existing alternatives outside of UML also have problems, for various reasons.
Some of the difficulties are visual modeling issues and others are semantic issues. One
of the most critical semantic requirements for modeling security is the ability to define
all traces of a protocol with a single model, as opposed to being able to describe any
trace with a single model. Explicit definition of the entire security protocol is neces-
sary for security. Another highly desirable modeling feature is event-based modeling,
as opposed to state-based modeling. State-based modeling requires us to work with
internal computational aspects, such as states or triggers, to construct the traces of a
protocol. An event-based modeling paradigm lets us work directly with the events and
traces of a protocol.

The core purpose of visual modeling, as opposed to other forms of modeling, is pre-
sentation and understanding. Formal verification, machine-generated implementation,
and other automatic processing are probably better supported by text-based models. So
our interest is in security protocol modeling that has good visual properties for presen-
tation and understanding, without sacrificing soundness that supports translation into
text-based models. This leads to the following criteria for security protocol modeling:

• The visual formalism should be event-based. It should focus on communication
patterns between processes and abstract away from details of internal computa-
tions.

• The visual formalism should support composition in a natural way, so that mod-
els can be constructed from components that identifiably correspond to the prin-
cipals of the protocol.

• The visual formalism should be comprehensive. It should be capable of defining
all traces of a protocol by means of a single diagram.

• The visual formalism should be concise. Defining a complex protocol should not
require an explosion of modeling details. (An event-based visual formalism can
fail to be concise.)

• The visual formalism should have a well-defined syntax and semantics.

The UML candidates for visual modeling are either not well-defined or they fail
to be comprehensive or concise. Visual modeling candidates outside UML are well-
defined but are either state-based or fail to be concise or comprehensive. The visual
interfaces to current security protocol modeling tools also do not provide a formal-
ism that satisfies all of our criteria. These candidates are not necessarily bad but are
not suited to visual security protocol modeling, according to one or more of the crite-
ria above. We make these statements without explanation here but present a detailed
justification in Section 5.
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Figure 1: Basic Boxes of GSPML

2 The GSPML Alternative
The goal of GSPML is to provide a visual modeling language suitable for the security-
specific problem of protocol modeling. The emphasis is on a solid visual model with
complete syntax and semantics, rather than tool application via the specific semantics.
Given a well-defined visual modeling language, a variety of formal techniques could
be used, including semantics that differ from the semantics of GSPML defined here.

The GSPML alternative is well-defined, event-based, compositional, comprehen-
sive, and concise. GSPML semantics is based on the semantics of the Communicating
Sequential Processes (CSP) process algebra. We chose CSP rather than another pro-
cess algebra because CSP has been used extensively to model security protocols. CSP
itself is usually explained visually by ad-hoc labeled transition system (see Sections 2
or 5.2) depictions or by “wiring diagrams” that indicate the synchronization between
processes. For the reasons discussed in Section 5.2, these ad-hoc diagrams also are
not suitable for visually modeling security protocols. GSPML is not intended to be a
“visual CSP” as we have no basis for claiming that generality. We do mean for it to
be able to model most security protocols as a single diagram, though not necessarily a
diagram that fits the format of this page. Appendix C provides an example model of a
complex security protocol in a single diagram.

Our presentation here in Section 2 does not define a semantics for the language but
provides an introduction and demonstrates the applicability of GSPML. The formal
GSPML semantics are presented in Appendix B.

2.1 Basic Boxes
In GSPML, every process is defined by either a process box (also referred to as a box
when simplicity is desired) or possibly a process box name (box name). Every GSPML
model is a collection of nested process boxes.

There are two major distinctions between boxes: sequential boxes and concurrent
boxes, as show in Figure 1. A sequential box has rectangular corners and models
sequential processes. A concurrent box has round corners and models concurrent pro-
cesses. Boxes have process regions that may contain other GSPML boxes. Sequential
boxes may also have event regions.

A box name may only appear as a label for a box, or inside a process region of a
box. A process region may have only one box or process name in it. The innermost
process regions of a well-formed GSPML diagram must contain box names only (not

3
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Figure 2: Sequential Boxes of GSPML

boxes), to rule out unbounded nested visual recursion. If this were not required, a box
with unbounded nesting of other boxes would be considered well-formed.

Events must appear as part of some sequential box, that is, never as part of a con-
current box. Only one event in one sequential box happens at any point time, unless the
event is shared among concurrent processes. Shared events happen simultaneously and
must have the same name everywhere they happen. Events are atomic but their names
may carry compound information, as indicated by a dotted notation. For example, a
single event that models the transmission of a message from entity a to entity b may be
named send.a.b.

Events may be visible or hidden. Visible events appear in the traces generated by a
box and may be shared between boxes. Hidden events may influence the behavior of
a box but do not appear in its traces; they represent internal behavior and may not be
shared. One practical application of hidden events is modeling nondeterminism.

2.2 Sequential Boxes
A simple sequential box, as shown in Figure 2 is divided into two regions: an event
region located above a process region. The event region of a simple sequential box
defines the order of events in a sequential process. Events are listed from top to bottom,
in the order they must occur. Each visible event is defined by a round event symbol on
the left hand boundary of the event region. All events must have names listed to the
right of the event symbol, inside the event region. Hidden events are represented by an
event name in the event region but have no event symbol on the left boundary of the
event region.

Figure 2 shows a simple sequential box that defines visible events x, y, z and hidden
event τ , that must be ordered as τ → x → y → z. The process region below the
event region of a simple sequential box must contain either a process name or another
process box. In either case, the process identified in the process region follows the last
event defined in the event region. So the simple sequential box in Figure 2 has the
semantics of the CSP process P = τ → x→ y → z → Q.

Each time an event occurs in a GSPML model the corresponding sequential box
is replaced by a box containing all of the following events. That is, in the simple
sequential box of Figure 2, after the events τ and x, the box P is replaced with a simple
sequential box having the event y above the event z in its event region and the process Q
in its process region. When all of the events of a box’s event region are consumed, the
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resulting box is taken from the process region. So simple sequential box P eventually
is replaced by box Q.

There are three other forms of sequential process boxes: prefix choice boxes, exter-
nal choice boxes, and internal choice boxes, as shown in Figure 2.

A prefix choice box offers choice over initial events. The choice then defines the
subsequent process. A prefix choice box comprises at least two and at most finitely
many event regions located above a corresponding number of process regions. Each
event region of a prefix choice box must contain only one event. Choice of event i
results in a process that does event i and then acts like the process in the ith process
region of the box. Prefix choice boxes are denoted visually by the diamond on the
lower left boundary of each event region. The prefix choice box P shown in Figure 2
either does event a first and then acts like process Q or does event b and then acts like
process R.

An external choice box offers choice over processes. An external choice box has no
event regions but comprises at least two and at most finitely many process regions, that
is, there are no event symbols on the left boundary of any region of an external choice
box. External choice boxes have no event regions because choice is based on process
names, not first events. External choice boxes are denoted visually by this absence of
events and by the external choice square on the boundaries between process regions.
The external choice box P depicted in Figure 2 either acts like process Q or like process
R, as chosen by the environment of box P.

An internal choice box differs from an external choice box by its relationship with
its environment; that is, an external choice box allows the environment to choose the
process, but an internal choice box makes the choice itself, without regard for the
consequences to its environment. An internal choice box is denoted visually by having
only process regions just like an external choice box, but without the square symbols
on its region boundaries.

2.3 Concurrent Boxes
There are two kinds of concurrent boxes: interleaving boxes and parallel boxes. A
basic interleaving box is a concurrent box (round corners) with two process regions.
An interleaving box denotes interleaved execution of the processes inside its process
regions. That is, each process executes concurrently with no communication. At any
point in time, one event from either the top region or the bottom region takes place,
but never from both, unless some form of enclosing parallel box adds communication.
Figure 3 shows a basic interleaving box. A basic parallel box looks like a basic inter-
leaving box with an interface port symbol between its process regions. The interface
port symbol means that there is a non-empty set of events that are shared between the
processes inside the two process regions of the parallel box. The shared events must
have the same names. Shared events are connected by synchronization lines. Synchro-
nization lines may be drawn anywhere that suits visual clarity, but must pass through
the interface port that defines the sharing. Figure 3 shows a parallel box with the event y
shared between sequential boxes P1 and P2. The synchronization line is drawn outside
of the parallel box to emphasize that it may be routed anywhere, as long as it passes
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Figure 3: Concurrent Boxes of GSPML

through the corresponding interface port. In GSPML synchronization lines are only
drawn because of an interface port in a parallel box.

The meaning of the parallel box P shown in Figure 3 is that the x and z events are
distinct in each process region of parallel box P. That is, for example, if box P1 does
an x and box P2 also does an x there are two x events in the trace of concurrent box P.
On the other hand, if box P2 in the bottom process region of concurrent box P does a
y then box P1 on the top also participates in the same y event: there is only one y in the
combined trace of top-level box P .

2.4 Indexed Boxes
Prefix choice, external choice, internal choice, interleaving, and parallel boxes have an
indexed form. Indexed prefix choice boxes are also referred to as prefix choice boxes,
for simplicity. Their form is shown in Figure 4. The meaning of prefix choice box P
from Figure 4 is that an initial event x is chosen from set X. After this event x then the
box acts like the process Q(x) which is selected by the value of event x. The indexed
form of a prefix choice box is denoted visually by a double diamond symbol on its
event region boundary and the fact that it has only one process region.

The other forms of indexed boxes use an index to identify each box in a finite set
of boxes. Each box Pj from the set is defined for j ∈ J , where J is a finite index set.
An indexed external choice box is denoted visually by a double square symbol on the
lower boundary of its upper process region and by the fact that it has only two process
regions. The description of the indexing set is placed next to the double square. The
lower process region contains a single GSPML box describing the indexed set of boxes.
An indexed external choice box allows its environment to choose a process based on the
index value. In the example indexed external choice box P of Figure 4, the environment
chooses a value j out of the index set J. The value j designates the box Q(j) that will be
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chosen. An indexed internal choice box acts like the indexed external choice box but
the box rather than the environment chooses the value j out of the index set J. Indexed
internal choice boxes differ visually from indexed external choice boxes by having no
double square symbol on their process region boundary. The indexed interleaving box,
does not offer a choice of boxes, but instead gives the modeler a way to compactly
describe the interleaving of a large number of similar boxes, each distinguished by
values chosen from the index set. An indexed interleaving box is denoted visually by a
double line separating its two process regions. The top process region will contain the
name of an index set and the bottom process region will contain a single GSPML box
representing the indexed set of boxes, as shown in Figure 4. Finally, there is an indexed
parallel box form of the parallel box. Indexed parallel boxes only have meaning when
the interface port is understood to communicate the same events to all boxes in the
indexed set. Any event from that interface happens in all of the boxes. An event not in
the interface happens in only one of the boxes. An indexed parallel box looks like an
indexed interleaving box, but has an interface port on the double line. Synchronization
lines are drawn from the interface port to the single box in the lower process region.
The synchronization lines may be used to indicate which events are communicated by
the interface port.

3 Hypergraph Grammar Syntax
We use a hypergraph grammar to define the syntax of GSPML because its diagrams
are represented syntactically as hypergraphs [2, 3]. A hypergraph is a generalization
of a graph where the edges (called hyperedges) can be attached to any fixed number
of nodes. A hyperedge visits these nodes. A hyperedge has connection points, called
tentacles, that attach to the nodes it visits. A (GSPML) diagram component is rep-
resented by a hyperedge with each tentacle representing a specific attachment point

7
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Figure 5: Top Level of the GSPML Hypergraph Grammar

for connecting diagram symbols to each other. For example, in the simple sequential
box of Figure 24(a) the event region is represented by a hyperedge that has an attach-
ment points bottom boundary that connects to the top boundary attachment point of the
process region below it.

A hypergraph grammar G is a quadruple G = (N,T, P, S) where the finite sets N
and T contain the nonterminal and terminal hyperedge types, the finite set P contains
the hypergraph productions of G, and S is the starting hypergraph. Each hypergraph
production p ∈ P of hypergraph grammar G is an algebraic hypergraph transforma-
tion rule (L

f`
← F

fr
→ R). Hypergraphs L,R and F of hypergraph production p are

the left-hand side (lhs), right-hand side (rhs), and interface. Mappings f` and fr are
hypergraph morphisms, with f` being into hypergraph L, that is, interface hypergraph
F is a sub-hypergraph of lhs L. Figure 5 presents the top-level productions of the
GSPML hypergraph. The productions combine symbols and layout from conventional
BNF grammar with visual depictions of the hypergraphs L,R and F . In each produc-
tion, hypergraph L appears to the left of a conventional BNF production symbol ::=
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and hypergraph R appears to its right. Alternative productions are indicated by vertical
bars as in conventional BNF production rules. For example, the first line of Figure 5
shows productions p1 through p5 as alternatives. The interface hypergraph F is implic-
itly defined by the labeled nodes and the hyperedges contained in both the left side and
right side of the visual depiction of the production rule. So the interface hypergraph F
for production rule p1 in Figure 5 consists of a single node labeled 1.

Nonterminals are depicted as rectangles, e.g. nonterminal Box in the rhs of produc-
tion p1. Terminals are shown as ovals, e.g. terminal BoxName in the rhs of production
p1. The interface of a production is implicitly defined by the numbered nodes that
appear in both the lhs and rhs hypergraphs of a production, e.g. nodes 1 and 2 of
production p1 shown in Figure 5.

Production p is applied to hypergraph H by finding left hand side L as a subgraph
of H and replacing sub-hypergraph L\F with sub-hypergraph R\F . The replacement
is oriented according to interface F and mapping fr. This step of a derivation results in
hypergraph H ′. The hypergraph language L(G) defined by hypergraph grammar G is
the set of all hypergraphs H that contain only terminal hyperedges, and can be derived
from start S in a finite number of steps.

The GSPML hypergrammar uses a special nonterminal hyperedge ε to indicate that
no diagram component is to be attached, in a production. For example, production p22

shown in Figure 9 in Appendix A uses an ε nonterminal hyperedge at attachment point
tb (top boundary) of the EventRegion terminal, to indicate that no diagram component
is to appear above the event region, in this production. In contrast, production p32 of
Figure 10 has the same event region terminal hyperedge attachment point tb associated
with the interface node number 1 of the MCSC nonterminal, to show that process
regions may appear above event regions in an application of menu choice convention
(refer to Figure 27 for the semantics of menu choice).

4 Structural Operational Semantics
Structural operational semantics (SOS) [4] is a well-understood approach and has a
significant literature. SOS is used to provide a model-theoretic interpretation for a
specification language or a process algebra. Structured operational semantics generates
an LTS in which the configurations are closed terms over a first-order single-sorted
signature. The transitions between configurations are defined by a transition system
specification or TSS. A TSS is a signature with a set of proof rules called transition
rules. If the TSS transition rules have only positive premises (see Def. 5) then the LTS
defined by the TSS is simply the transitions derivable from the transition rules.

None of the SOS literature address semantics for diagrams as opposed to text sym-
bols. The approach taken here is to define the semantics of GSPML via a TSS defined
on the visual box symbols of GSPML. That is, the transition rules are diagrams rather
than text. A GSPML transition between LTS configurations steps from one diagram to
another.

Correct depiction of a box is defined not only by the hypergraph grammar of Ap-
pendix A but also by the way boxes are drawn in the transition rules of Appendix B.
For example, the question of whether to draw an event symbol as a circle, a square, or

9



a triangle is answered by the way the applicable boxes in Figures 24, 25, 26, and 39 are
drawn in Appendix B. The visual characteristics of a diagram that are defined by the
TSS transition rules are

• Corner Shape: The shape of box corners but not the size or aspect ratio of the
box;

• Diagram Symbols: The shape of diagram symbols that are not boxes;

• Text Symbols: The meaning of text symbols associated with a box.

• Placement: Aspects of placement not easily described by the hypergraph gram-
mar. For example, the placement of event symbols at the left boundary attach-
ment point of an EventRegion terminal is show in Figure 24 and cannot be
understood as such directly from the hypergraph grammar.

An example of corner shape is that sequential boxes must have rectangular corners.
An example of a diagram shape rule is that event symbols must be circles. An example
of a placement rule is that box names must be placed outside their corresponding box,
at the upper left corner.

We will point out these characteristics as they are defined by the transition rules.
Only changes or new information will be presented with succeeding rules. That is, if a
visual characteristic is not mentioned in a rule, then that characteristic must have been
defined in an earlier transition rule.

At this point the relative sizes of the visual elements have been left undefined. The
definitions do include some recommendations in terms of the em space and ex space
of the font used for text symbols. In this report the term near, when used to define
GSPML diagrams, can be taken to mean a distance between one and three em spaces.

4.1 TSS Definitions
We begin our TSS descriptions with the necessary definitions. All of them are fairly
conventional for the TSS of a positive process algebra. They are stated here for com-
pleteness.

Definition 1 (Box) A box is a rectangular GSPML diagram that denotes a process.
We denote an unspecified box by the text symbol �. GSPML boxes can have names.
We denote the specific box named P with first event a as a

P

�.

Intuitively, boxes act as the configurations of our labeled transition system, as explained
in Definition 2. In a GSPML diagram, box names are denoted by text symbols near the
upper left corner of the box, but outside the box. This is partially defined by production
p1 shown in Figure 8 of our hypergrammar, but the placement and textual nature of the
BoxName terminal are defined by the diagrams used in the LTS of Appendix B.

Definition 2 (Labeled Transition System) A (GSPML) labeled transition system (LTS)
is a triple (B, A,⇒) where

10



• B is a set of boxes that act as the configurations,

• A is a set of events,

• ⇒ is a set of binary relations a
→ of the form a

→⊆ B × B.

Visible events from set A are denoted in lower case; the letter τ is used to denote
hidden events. The letter µ is used to denote an event of unspecified visibility.

This report follows the usual practice of writing 〈P�,
P ′

�〉 ∈
a
→ as P

�
a
→

P ′

�. These
binary relations are the transitions of our LTS. We also use the notation P

�
a
9 to state

that there is no box P ′

� such that P

�
a
→

P ′

�. Notice that by this definition a transition
changes one GSPML diagram to another GSPML diagram. Intuitively, each transition
results in a new drawing.

The GSPML LTS is finitely branching: for every box P

� there are only finitely many
transitions P

�
a
→

P ′

� out of box P

�. The GSPML LTS is regular: it is finitely branching
and each box can only transition into finitely many other boxes. The GSPML LTS is
finite: it is regular and there is no infinite sequence of transitions P0

�
a0→

P1

�
a1→ . . ..

Definition 3 (Signature) Let V be a countably infinite set of variables, ranged over
by x, y, z. Then a signature Σ is a set of function symbols disjoint from V , together
with an arity mapping that assigns a natural number ar(f) to each function symbol f .

The arity of a function represents the number of arguments it has. A function
symbol of arity zero is a constant, function symbols of arity one are called unary, and
function symbols of arity two are called binary.

Definition 4 (Term) The set T(Σ) of open terms over a signature Σ, ranged over by
t, u, is the least set such that:

• each x ∈ V is a term;

• if f is a function symbol and t1, t2, . . . , tar(f) are terms then f(t1, t2, . . . , tar(f))
is a term.

T (Σ) denotes the set of ground terms over Σ. Ground terms do not contain vari-
ables.

A substitution is a mapping s : V → T(Σ). A substitution is closed if it maps each
variable in V to a ground term in T (Σ).

Definition 5 (Transition System Specification (TSS)) Let Σ be a term algebra sig-
nature, and let P

� and
Q

� range over T(Σ). A transition rule ρ is of the form H/α, with
H a set of premises P

�
a
→

Q

� and α the conclusion of the form P

�
a
→

Q

�. A transition
system specification is a set of transition rules.
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The left-hand side of a transition rule ρ is called the source of ρ and the right-hand
side of ρ is called the target of ρ. A transition rule ρ is closed if it does not contain
variables. Transition rules are often written in the form H

α
; they are drawn in the

same style in Appendix B. The TSS in this report is positive; it contains only positive
transition rules. Positive transition rules do not contain premises of the form P

�
a
9, i.e.

claiming that there are no a-transitions out of box P

�.

Definition 6 (Literal) A literal is a transition P

�
a
→

P ′

� where P and P ′ range over
the set of closed terms T (Σ).

Definition 7 (Proof) Let T be a TSS. A proof of a closed transition rule H/α from T is
a well-founded, upwardly branching tree whose nodes are labeled by literals, such that

• the root of the tree is α.

• if B is the set of labels of nodes directly above a node with label ` then either

– B is empty and ` ∈ H , or
– K/` is a closed substitution instance of a transition rule in T.

If a proof of H/α exists then H/α is provable from T . This is usually written as T `
H/α. The meaning of the GSPML transition system specification T of Appendix B) is
defined as the LTS made up of all provable transitions defined on the rules of T .

Behavioral equivalence is a critical part of the meaning of GSPML. We need to
be able to know or say if two boxes define the same behavior. There is a rich body
of literature defining behavioral equivalence for conventional LTS’s and it applies to
GSPML’s LTS semantics. To demonstrate this, we present, for GSPML, two of the
most important forms of LTS equivalence: bisimulation [6, 7] and ready simulation
[8, 9].

Definition 8 (Bisimulation) A binary relation R on the boxes of an LTS is a simula-
tion if whenever P1

� R
Q1

� and P1

�
a
→

P2

� then there is also a transition
Q1

�
a
→

Q2

� such
that P2

� R
Q2

� . If simulationR is symmetric then it is a bisimulation.

Two boxes P

� and
Q

� are bisimilar if P

� R
Q

�; we denote this bisimulation equivalence
as P

� ⇔
Q

�.

Definition 9 (Ready Simulation) A simulation R on the boxes of an LTS is a ready
simulation if whenever P

�R
Q

� then if P

�
a
9 we also have

Q

�
a
9.

Trace semantics are an alternative to LTS semantics. Instead of defining processes as
labeled transition systems, trace semantics defines processes strictly in terms of their
external properties: the sequences of actions a process is prepared to perform or refuse.
Trace semantics is the usual semantics for CSP, our chosen basis for GSPML, but trace
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semantics do not directly show the evolution of a box from one form to another. For
this reason, we chose to formally define GSPML boxes as LTS’s.

It is also possible to define trace semantics from LTS semantics [10]. Because of
this, we can define a GSPML trace semantics from our box-based LTS.

Definition 10 (Trace) Given a (GSPML) LTS, a sequence t of its visible events

t = a0 . . . an, n ∈ N

is a trace of box P0

� if there exist boxes P0

�, . . . ,
Pn

� such that P0

�
a1→

P1

�
a2→ . . .

an→
Pn

� .
This can be written more compactly as P0

�
t
→

Pn

� . For a box P

� we define

initials(
P

�) = {a ∈ A|∃
Q

� ∈ B :
P

�
a
→

Q

�}

Traces alone can be used to define equivalence between boxes and this is sometimes
preferred for security protocol modeling. There are finer definitions of trace equiva-
lence and these apply to GSPML semantics. The initials initials(

P

�) of boxes P

� can be
used to define a decorated traces system or DTS [10] that provides a more precise form
of equivalence.

Definition 11 (Decorated Traces System) A decorated traces system is a triple (A, T , f)
where

• A is a set of events.

• T is a set of traces.

• f : T → 2A is a function from traces to sets of actions.

Function f is used to “decorate” each trace with a set of pertinent events. Different
notions of decoration define distinct forms of process equivalence.

Like labeled transition equivalences, there is also a rich body of literature defining
decorated trace equivalences; for example see the results of Bloom et al. [11]. To
connect these results to GSPML, we present one important form of decoration here,
stable failures. Stable failures not only account for possible deadlock or other forms of
error they also deal with impact of hidden events and thus nondeterminism:

Definition 12 (Stable Failure) A box
Q

� is stable if
Q

�
τ
9; intuitively box

Q

� does not
have the potential to change its initials by participating in a hidden event τ . Event set
X is a refusal of stable box

Q

� if
Q

�
µ
9, for any event µ ∈ A. Event set X is a refusal

of box P

� if the empty trace 〈〉 leads box P

� to some stable box
Q

� that has event set X
as its refusal. A pair (t,X) with trace t ∈ T and event set X ⊆ A is a stable failure of
box P

� if

• there is a stable box
Q

� such that trace t leads box P

� to stable box
Q

�, i.e. P

�
t
⇒

Q

�,

• event set X is a refusal of box P

�.
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4.2 Conventions
To permit clearer drawings, GSPML includes the application of certain conventions.
Conventions define shortcuts or simplified ways of drawing a GSPML box. A conven-
tion can be defined in terms of the structural operational semantics presented here, but
visually it is simpler. An example convention is that GSPML allows a list of events
to be drawn together in the event region of a sequential box while the meaning is only
defined in terms of boxes with a single (first) event (see Figure 25 in Appendix B). The
vertical list of events can be understood as nesting of single-event boxes.

5 Related Work
In this section we present a detailed application of our criteria: event-based, compos-
able, comprehensive, concise, and well-defined, to other candidates for visual modeling
of security protocols. Using the criteria, we can assess the suitability of the various
MDA/UML models for security protocol design and analysis. We can also investigate
the usefulness of other modeling approaches that are not part of the MDA suite.

5.1 UML Candidates
To model security protocols in UML, we must use one or more of the available mod-
eling mechanisms: actions, activities, interactions, state machines, or use cases. Use
case models are high-level requirements tools and use the other visual modeling tech-
niques to describe behavior, so they are not candidates for modeling any but the most
rudimentary concepts of security protocols. UML Actions include constructs such
as BroadcastSignal, ReadVariable, and WriteLink; they correspond to individual
events, methods, messages, or calls. Thus, they are also not suited to modeling com-
plete security protocols.

UML Activities organize UML Actions into structures that resemble Petri nets.
UML Activities employ control- and data-flow relationships in their Petri-net-like struc-
tures, which is less desirable when the issue is protocols and we wish to avoid details
about internal computations.

UML Interactions are similar to ITU Standard Z.120 Message Sequence Charts, or
the older UML 1.x Sequence Diagrams: a collection of vertical life-lines with message
flow between the lifelines shown horizontally. Both UML Interactions and ITU Mes-
sage Sequence Charts have semantic problems. Damm and Harel have provided a well-
defined semantics for these kinds of diagrams, in a visual modeling technique called
Live Sequence Charts [12]. All of these “sequence-diagram” modeling paradigms have
the critical strength of being event-based: they model sequences without internal com-
putational detail. That is, they model behavior directly in terms of protocol traces.
Unfortunately, they all have limited usefulness in modeling security protocols because
each diagram defines only a subset of the traces of a protocol. The nature of these
diagrams is that they visually enumerate traces and lack the power of set theory or pro-
cess algebra to explicitly define all possible traces of a combination of principals. For
example, suppose we use the BPA (Basic Process Algebra) process algebra of Bergstra
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and Klop [13] to define P = a · P , the process P that does event a and then acts like
process P . If the expression traces(P ) means the set of all traces of process P and
the symbol _ denotes concatenation of traces then we can use set theory to explicitly
define all of the traces of P = a · P as

{〈〉} ∪ {〈a〉_tr | tr ∈ traces(P )}

while the corresponding “sequence-diagram” enumeration approach is equivalent to
the symbolic listing of each possible trace

〈〉, 〈a〉, 〈a, a〉, . . .

As soon as there is a modest variation in the pattern of the traces, this enumeration
approach begins to break down. In contrast, process algebra or set theory provides us
a complete definition in a single model but still allows us to unwind the model to see
or check any trace. The visual modeling equivalent of set theory or process algebra is
needed to solve this problem.

UML State Machines would appear to offer some promise. They are based upon
(but are not the same as) the object-oriented version [14] of Harel’s elegant statechart
[15] visual formalism. Since statecharts are a well-defined visual model, UML State
Machines should be able to define completely any security protocol, with a single
model. Unfortunately, UML State Machines have some problems: 1) received events
are modeled by a different mechanism that sent events, 2) the semantics are run-to-
completion which poses problems for modeling some forms of recursion (Tenzer and
Stevens [16] provide good examples of this), and 3) some of the events are not atomic
[17]. Some of these problems are avoided by the concept of UML Protocol State Ma-
chines. UML Protocol State Machines are like UML State Machines without UML
Activities. That is, a UML Protocol State Machine only has triggers associated with its
transitions while the more general UML State Machine also has UML Activities asso-
ciated with its transitions. The effect of this is that a UML Protocol State Machine can
describe one side of an interaction between two security principals: either the sequence
of requests a principal can make or the sequence of responses that that a principal can
provide. This is sufficient for constraining interfaces but not for modeling a complete
security protocol.

From these circumstances we can conclude that UML is not well-suited to modeling
security protocols. This leads us to examine other visual modeling techniques outside
of UML, to see if they are better tools for modeling security protocols.

5.2 Existing Visual Models Outside of UML
We have already mentioned Live Sequence Charts as a well-defined event-based mod-
eling technique. The problem of needing more than one diagram to define all of a
protocol remains. Another possibility is a visual representation of labeled transition
systems. A labeled transition system or LTS is a triple (Γ, A,→) where Γ is a set of
configurations, A is a set of events, and→ is a ternary relation: → ⊆ Γ × A × Γ.
Intuitively, the relation→ represents the transitions from one configuration to another;
〈γ, a, γ′〉 ∈ → is usually written as γ

a
→ γ′. Labeled transition systems are ideal for
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machine representation and processing of event systems. The problem with labeled
transition systems as a visual modeling paradigm is the same problem that lead to the
development of statecharts: “the unmanageable, exponentially growing multitude of
states, all of which have to be arranged in a ‘flat’ unstratified fashion” [15]. Labeled
transition systems are not concise. Current LTS work is turning to algebraic treatments
to overcome this difficulty. Petri nets were developed by Carl Petri [18] for formal
modeling of concurrency, nondeterminism, and communication. Petri nets are well-
defined and have a large body of literature. They are useful for a wide range of prob-
lems including workflow and performance modeling. The difficulty with using them
to model security protocols is the presence of computation details: initial markings,
places, transitions, and data flow. They are not event-based. Another difficulty is that
Petri-net-based models are not naturally composable in terms of security principals.

Port state machines, a formalism developed by Mencl [17], have removed the se-
mantic difficulties associated with UML State Machines, while retaining the semantic
clarity of statecharts. Furthermore, port state machines also address modeling details
needed for object-oriented programming, which the original statecharts lack. How-
ever, because of this and their state-based nature, port state machines have too much
computational detail for modeling security protocols. They are not event-based.

Harel’s original statecharts are a good candidate for modeling security protocols,
because they lack the extra details needed to model object-oriented programming is-
sues. They are semantically sound and can define an entire protocol with a single
diagram. Statecharts also have excellent visual modeling characteristics. They are not
event-based and require consideration of states and transitions as well as the events
they model. We would prefer a more directly event-based modeling paradigm.

Walters has designed RDT [19] as a formal visual language based on activity di-
agrams. RDT is designed foremost for visual clarity, just what is needed for visual
modeling of security protocols. It would be a good candidate but it uses an LTS form
of depicting behavior, so it is not event-based.

Another alternative we have not considered up to now is a graphical form of pro-
cess algebra. Process algebras are event-based but avoid the explosive complexity
of labeled transition systems by means of algebraic operators. Process algebras view
processes as abstract trace generators and provide means for composing processes to
define more complex trace generators.

Cleaveland, Du, and Smolka developed Graphical Calculus of Communicating Sys-
tems (GCCS) [20] as part of the Concurrency Factory tool [21]. The GCCS visual
notation is based on Milner’s CCS [22] process algebra but the diagrams are visual de-
pictions of labeled transition systems. GCCS diagrams have the same visual limitations
as basic labeled transition systems: they are not concise.

Cerone developed Visual Process Algebra or VPA [23], a modeling technique based
on combinations of the CCS, CSP [24], and Circal [25] process algebras. The VPA
approach models processes as boxes with ports to indicate communication and thus
has the potential to be event-based. Unfortunately, VPA uses an LTS or state-machine
approach within each box to model the behavior of the corresponding process. For
security protocol modeling we would really prefer an approach that avoids labeled
transition systems altogether.

Gilmore and Gribaudo [26] extended the DrawNET tool to model the PEPA [27]
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Figure 6: Resolving Compositional Ambiguity in gCSP

stochastic process algebra. The DrawNET tool is oriented towards performance model-
ing; the graphical representation of process algebra retains the Petri nets of the underly-
ing tool, so the DrawNET representation is not really well-suited to modeling security
protocols.

The gCSP (for graphical CSP) tool, developed by Hilderink, Jovanovic, et al. [28,
29] is the most ambitious graphical form of process algebra to date. Processes are
denoted as circles in gCSP. Lines connecting the processes denote composition via the
various operators of CSP. A surprising omission is the graphical modeling of events
and their ordering within a sequential process. That is, even though gCSP can cleanly
show sequential processes P and Q in parallel P || Q, it cannot show the events that
make up sequential process P (or Q). This is not a difficulty for control applications
that gCSP has been applied to, but it is critical for modeling security protocols.

From a security protocol modeling perspective, the gCSP notation is interesting be-
cause it presents a contrast to the graphical modeling paradigm proposed in this paper.
Process algebras are strongly compositional. It is difficult to present complex process
algebra relationships graphically. Figures 6 and 7 illustrate this difficulty in the gCSP
notation. Figure 6 shows the process algebra fragment P ;Q||R which is an ambigu-
ous term specifying the sequential (via the ; operator) and parallel (via the || operator)
composition of processes P,Q and R. Figure 6 (a) shows how this ambiguity can be
drawn in gCSP. Figure 6 (b) shows how this ambiguity can be resolved by drawing
cycles to add arcs for all relationships. This is problematic in complex compositions
since the diagram tends to become a fully connected graph. The gCSP notation has
a clever solution to this, shown in Figure 6 (c), where a smaller circle is used on one
side to denote the precedence. The notation is well-defined and capable of automatic
simplification. However, in complex situations, the notation becomes difficult to read,
as shown by Figure 7. However, it is the lack of explicit events that renders gCSP
unsuitable for security protocol modeling.

5.3 Security Protocol Modeling Tools
Another possibility is the (visual) modeling provided by security-protocol-specific tools.
Most of the these tools have visual modeling components and it is possible that we may
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find a satisfactory (from the visual modeling perspective) language or technique there.
Considering these tools will also clarify our emphasis on presentation and understand-
ing as opposed other purposes such as verification or analysis. Clearly the existing
tools are effective for those other purposes.

The Security Protocol Engineering and Analysis Resource (SPEAR) tool [30] pro-
vides multidimensional protocol analysis. Multidimensional protocol analysis com-
bines several non-visual modeling approaches in order to get a more complete picture
of the security of a cryptographic security protocol. The SPEAR tool incorporates
multidimensional protocol analysis under a graphical user interface. Unfortunately,
SPEAR uses message sequence charts to visually model security protocols. Its graphi-
cal language is not comprehensive.

The Common Authentication Protocol Specification Language (CAPSL) and Mu-
CAPSL, its group multicast protocol version, is a formal language for specifying cryp-
tographic security protocols [31]. CAPSL is well-defined, concise, comprehensive, and
compositional. CAPSL models can be translated into many forms and several crypto-
graphic protocol analysis tools have CAPSL support. Unfortunately, there is no visual
form of CAPSL per se.
The Convince tool is a pioneer effort in visual modeling of cryptographic security
protocols [32]. Convince uses a text-based formal language based on BGNY [33]
logic. Unfortunately, the characteristics of BGNY do not carry over into the visual
modeling language, which is essentially a version of UML. In particular, protocol steps
are modeled visually using message sequence charts.

One security protocol analysis tool that does use a distinct security-specific visual
language is the NRL Protocol Analyzer (NPA) [34]. NPA has its own text-based lan-
guage NPATRL (pronounced “N Patrol”) that models a wide range of security protocol
requirements. NPATRL is an event-based language for expressing trace properties. It
uses familiar logic operators and one temporal operator to define logical properties of
events or traces. The NPA tool has a corresponding tree-structured language for visual
modeling of NPATRL specifications [35]. The visual language is event-based, concise,
and well-defined. Our motive for looking further is that the visual NPATRL language
is a trace-property-language while we are looking for a protocol-definition language.
That is, the visual NPATRL language does not define the traces of a particular protocol,
but the properties (i.e. requirements) of a good protocol. We are looking for a language
that can define protocols as they operate, good or bad.
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5.4 UML-Based Security Modeling
Some work has been done on security modeling with UML. Epstein and Sandhu [36]
show how UML can be used to model RBAC policies. Jürjens [37] has proposed
UMLsec as a means of annotating UML with stereotypes and tagged values, to specify
security requirements. Basin, Doser, and Lodderstedt [38] have extended UML, via
stereotypes, to SecureUML. The SecureUML language can be used to specify access
control requirements on UML Class Diagrams and UML Statemachines. None of this
work covers security protocol modeling. Nevertheless, it supports our observation that
bare UML does not treat security issues adequately.

6 Conclusions
Some complex concepts can be understood more quickly by visual means. Some per-
sons prefer visual descriptions to text-based notation. GSPML provides those benefits
for security protocols.

Our first conclusion is that GSPML is a modeling language that meets the security
protocol modeling criteria: event-based, compositional, comprehensive, concise, and
well-defined. There is no other visual modeling technique that satisfies all of these
criteria. The current Model Driven Architecture does not provide security-specific
modeling facilities and its general modeling facilities fail to satisfy one or more of
our criteria. There are well-defined visual formalisms outside of the MDA/UML that
could be used to model security protocols: labeled transition systems, Harel’s original
statecharts, and Petri nets. However, each of these three is also lacking in at least one
criterion.

A comment on our first conclusion is that all of the modeling approaches consid-
ered in Sections 5.1 and 5.2 are useful and in some cases superior to GSPML, for
applications other than security protocol modeling. For instance, a lack of states and
other internal computational details makes GSPML less suitable for modeling object-
oriented implementations. GSPML is for modeling and defining protocols visually.
Other than through some visual form of the rank function approach [39], GSPML is
not suited to verification or analysis of protocols but should be used as part of a protocol
analysis tool as considered in Section 5.3

Our second conclusion is that, from a visual modeling point of view, the idea of
a security protocol should be generalized to any form of interaction between security
principals. The proposed notation should be security or protocol specific, rather than
specialized to only cryptographic protocols.

Our final conclusion regards the application of GSPML. Security protocol design
and modeling is usually considered a security specialist responsibility and outside the
expertise of a general software developer. Why then would we need a modeling lan-
guage just for security protocols? There are three reasons: 1) security specialists benefit
from visual modeling, as demonstrated by the visual components of the tools described
in Section 5.3, 2) a visual presentation may be more useful to software developers who
have to implement the security protocol and thus serve as a bridge from specialist to
generalist, 3) many security protocols fail because they are used in new or different
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environments; GSPML models may reveal the impact of the new environment more
clearly than a text-based model.

Future work on GSPML will include further prototyping and application, to val-
idate the syntax and semantics. We will also continue to analyze the visual aspects
of the language, to improve the balance [40] between language complexity and the
complexity of visual models drawn in the language.
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Figure 8: Top Level of the GSPML Hypergraph Grammar

A The GSPML Hypergraph Grammar Syntax
The syntax of GSPML is defined by the hypergrammar presented in this section. The
syntax is given for diagrams that include the conventions (see Section 4) that are not
part of the semantic definition of the language. Derivation of the simpler syntax for
semantic definition is straightforward, since we only need to delete productions.

There are several intentional omissions in the grammar, to keep the size presentable
for this report. The omitted productions would need to be added to a parser that used
this grammar to automatically check the syntax of a model.

The syntax does not provide for hidden events. To provide for hidden events we
can add another terminal HiddenEvent that acts as a placeholder. That is, space for the
hidden event is allocated on the left boundary of the applicable event region, but no
event symbol is shown. This leaves space for the event name, which will always be τ ,
in the list of events while allowing us to parse diagrams that contain hidden events. For
each production that uses the Event terminal, we add another production that has the
HiddenEvent terminal in place of the Event terminal.
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Attachment Point Attaches
n A name to a GSPML box or region.
e A box or region to its containing environment.
c The contents of an event or process region.
lb An event or list of events to the left boundary of an event region.
tb A process or event region to a process or event region’s top boundary.
bb A process or event region to a process or event region’s bottom boundary.
tbl A diamond or square symbol to the top left boundary of a process region.
s A synchronization line to an event symbol.
r A interface port symbol to a process region boundary.

Table 1: Attachment Points Used in the Grammar

No syntax is provided for backward renaming. The syntax of backward renaming
is essentially the same as for forward renaming. The differences between the two are
semantic.

Only half of the necessary productions for sequential composition and interrupt are
show in Figures 9 through 20. The productions shown only provide for connections on
the top boundary.

The following table, Table 1, describes the most important attachment points used
in the grammar.
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B The GSPML TSS
This appendix describes the visual TSS that defines the semantics of GSPML. It as-
sumes that the reader has already seen Sections 3 and 4.

B.1 Sequential Boxes
This section defines GSPML semantics for simple sequential boxes, the event region
convention, menu choice, recursion, external choice and internal choice.

B.1.1 Simple Sequential Boxes

The Event Region Rule, shown as Figure 24, defines the most basic semantics of
GSPML. It is always the case that a box may perform its event, so there is no premise.
Events and event names are depicted as shown in the event region of the rectangular
box of Figure 24. The syntax is defined by the hypergraph grammar productions of
Figure 9. When the event takes place, the left-hand box is replaced by the box named
or drawn in the process region of the left-hand box. Figure 24 shows two transition
rules: Event Region Rule (a) and Event Region Rule (b). The (a) form of the rule
defines transitions for box names and the (b) rule defines transitions for boxes. Event
Region Rule (b) also requires that the innermost process region of a GSPML diagram
contain a box name rather than a box.

The Event Region Rule also defines the following visual characteristics:

• Corner Shape: A simple sequential box must have rectangular corners.

• Diagram Symbols: The box has an event symbol for its event, if the event is
visible. The event symbol is a circle. The recommended diameter of the circle is
one em space of the font used for text symbols.

• Text Symbols: The box may have a box name and an event name for its event.

• Placement: The event symbol (represented by the Event terminal of the hyper-
graph grammar) must be placed on the left boundary of the event region. An
event symbol should not touch the upper or lower boundary of the event region.
The box name should be placed within two em spaces of the upper left corner of
the box, outside its boundary.

B.1.2 Event Regions

Given the Event Region Transition Rule we can introduce a convention that allows us
to avoid nesting for the sake of sequential events. We call this convention the Event
Region Convention. This convention is shown as in Figure 25. Its syntax is also given
by the productions of Figure 9. The premise box gives the meaning of the convention
depicted as the conclusion box.

The Event Region Convention also defines the following visual characteristics:
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Figure 24: Event Region Transition Rule
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Figure 25: Event Region Convention

• Text Symbols: The box must have an event name for each visible event.

• Placement: Event symbols must be placed on the left boundary of the event
region. The first event appears at the top and succeeding events are placed in
order from top to bottom, with the last event at the bottom. Event symbols should
be separated by a vertical space of about one ex space of the font used for text
symbols.
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a ∈ A

P (x)

x ∈ A

a
P (a)

Figure 26: Menu Choice Transition Rule

B.1.3 Menu Choice

The Menu Choice Transition Rule allows boxes to choose between first events. Menu
Choice is shown in Figure 26. The syntax is defined by the productions shown in
Figure 10. The set A is a set of events and the side condition a ∈ A reminds us that
there must be a box

P (a)

� defined for each event in A. If event set A is empty, then a
menu choice sequential box is equivalent to STOP . Box

P (a)

� must be distinguished
by event a but a need not be the first event of

P (a)

� .

• Diagram Symbols: The lower boundary of the event region must have a double
diamond event choice symbol. The size of each diamond should be about two
em spaces.

• Text Symbols: The form of the event set descriptor must be x : A with the event
variable denoted as x and the event set as A. The event parameter in the name
of the box contained in the process region must match the event variable of the
event set descriptor.

• Placement: The event set descriptor must be placed next to the event symbol,
inside the event region.

Given Menu Choice’s general choice from a set, we can introduce a convention
that allows us to depict small sets of events more clearly. This convention is shown
in Figure 27 as the Menu Choice Convention. The premise box gives the meaning of
the convention. Choice of event i results in a box that does event i and then acts like
the process in the ith process region of the box. Menu Choice Convention boxes are
denoted visually by the single diamond in the lower boundary of each event region.
The syntax of the Menu Choice Convention is also included in Figure 10.
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Figure 27: Menu Choice Convention
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Figure 28: Recursion Transition Rule
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Figure 29: Mutual Recursion Transition Rule

B.1.4 Recursion

Recursion is based on box names. There is no “recursion” box or diagram symbol. A
visual reminder of the designer’s intent is provided by sets of small numbered circles,
once placed next to each box name that defines the recursion. Simple recursion is
defined in Figure 28 and general mutual recursion in 29.

• Diagram Symbols: Each box name used for recursion should have a correspond-
ing recursion symbol next to it. The recursion symbol should be a circle as shown
in Figure 28 with a diameter of about 1.5 em spaces. If large (i.e. more than one
text character) recursion symbols are desired, then larger circles are appropriate.
It is an error to have only one recursion symbol in a diagram.

• Text Symbols: Each recursion symbol should have a single character to identify it
with the other box names and recursion symbols that participate in the recursion.

• Placement: Recursion symbols should be placed near the right end of the corre-
sponding box names.
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Figure 30: External Choice Transition Rule

B.1.5 Choice

Menu choice boxes define a choice of events with a single process. The other possibil-
ity is choice of process. The chief distinction is whether the environment can choose
or the box chooses internally.

External choice boxes are initially able to perform the events of either process of
choice: the choice is made by the environment of the box and the box’s behavior is
deterministic. Figure 30 shows the transition rule for external choice. The syntax of
External Choice is given by Figure 11. The first pair of rules, (a) and (b), shows the
visual commutativity of the choice over visible events. That is, the top-to-bottom order
of the processes does not change the meaning and the result is the box from the chosen
process region. The second pair, (c) and (d), shows commutativity for hidden events
and also defines the fact that hidden events do not resolve the choice of box. That is,
in parts (c) and (d) of the rule, the internal transition always results in another external
choice box.

External choice boxes are also associative. That is, the order of nesting a choice
over three boxes does not change the semantics. Figure 31 depicts this visual associa-
tivity. The external choice box of Figure 31(a) has the same meaning as the box of
Figure 31(b).

• Diagram Symbols: The box should have a square external choice symbol as
shown in Figure 30. The size of the square should be between one and two em
spaces on a side.
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Figure 31: Associativity of External Choice

• Text Symbols: The external choice box may have a box name.

• Placement: The external choice box should be placed on the left end of the
boundary between the two process regions.

Given the basic external choice box, we can apply its commutativity and associa-
tivity to define a convention for generalized indexed external choice. The meaning of
this convention is shown as Figure 32.

• Containment: The single process region will contain a index set specification
and a process box.

• Diagram Symbols: The box will have a double square indexed external choice
diagram symbol.

• Text Symbols: The index set will be specified as a text symbol.

• Placement: The indexed external choice diagram symbol will be placed at the
upper left corner of the box. The index set specification will be placed near the
right side of the indexed external choice diagram symbol.

Internal choice boxes allow the depiction of nondeterminism. The meaning of an
internal choice box is shown as Figure 33. The two parts to the rule show that an in-
ternal choice box may transition into either of the boxes contained in its two process
regions via a hidden event. The transition takes place before any event in the environ-
ment of the internal choice box. Unlike the external choice box, the internal choice box
is not initially prepared to act like either of its contained choices but instead acts as one
or the other, in an unpredictable manner. Internal choice boxes are distinguished from
external choice boxes by the absence of an external choice diagram symbol. Internal
choice boxes have an indexing convention just like external choice. This convention is
shown as Figure 34.
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Figure 32: Indexed External Choice Convention
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Figure 33: Internal Choice Transition Rule
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i ∈ J

Figure 34: Indexed Internal Choice Convention
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Figure 35: Depicting Abstract and Concrete Synchronization

B.2 Concurrency
Synchronization in GSPML is defined as a broadcast communication mechanism: events
that are shared take place at the same time in all processes. In GSPML, synchronization
is depicted with synchronization lines or synch lines. Synchronization lines are drawn
as dashed lines. Synchronization lines are drawn to connect all instances of a shared
event.

Figure 35 shows how event sharing and synchronization are depicted in GSPML.
The right hand box of Figure 35 shows concrete synchronization. In concrete synchro-
nization, a synchronization line is drawn connecting each pair of shared events, for all
events that synchronize. If events are not connected by a synchronization line, they are
not shared.

The left hand box of Figure 35 shows abstract synchronization where there are
no event symbols connected by synchronization lines but there is an interface port
symbol. In abstract synchronization, synchronization lines connecting events are not
shown because some of the applicable events are contained within an abstract box. We
can still have information about the events that are shared across the interface because:

1. either the interface between the two boxes inside the process regions is explicitly
defined as a set of events and the name of the set is written inside the interface
port symbol; or

2. there is no set name on the interface port and we assume that all visible events
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Figure 36: Simplified Depiction of Synchronization Lines

are shared across the interface.

Figure 35 shows the latter kind of abstract synchronization. Abstract synchronization
allows us to show synchronization that is taking place, without having to draw a synch
line for each shared event. As Figure 35(a) shows, we allow the depiction of uncon-
nected synchronization lines, as a visual reminder that some events are shared, even
though the connections are only implicit.

Figure 36 shows how synchronization lines may be depicted in a simpler way, when
there is more than one pair of events defined on an event name. In Figure 36(a) full
concrete synchronization is show. This is the defined semantics of GSPML synchro-
nization lines. Notice that because sequential boxes P1 and P2 are combined via an in-
terleaving box, it is possible for an event with the same name to be synchronized more
than once inside a single process region. The upper process region of Figure 36(a)
has synchronization of events a and b more than once. If interleaving or nested paral-
lel boxes are used in both process regions of a parallel box, the synchronization lines
can become cluttered and hard to understand. Renaming can make the situation even
more complex, as multiple event names in one process region may be mapped onto a
single event name in another process region. To avoid this, we collapse the multiple
synchronization lines into a single branching line that connects all shared events that
have the same name. So there is one line for each event name, representing multiple
synchronization lines. Figure 36(b) shows this simplification, applied to the model of
Figure 36(a).
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B.2.1 Interleaving

Interleaving concurrency implies no synchronization except on termination. The events
of two interleaved boxes happen independently but one box cannot continue after the
other box has terminated. Figure 37 depicts this. Parts (a) and (b) of Figure 37 de-
fine the commutativity of an interleaving box and Figure 37(c) defines the common
termination.
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µ
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µ 6= X
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Q
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S
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Q
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S

(b)
µ 6= X

(c)

R

P

Figure 37: Interleaving Transition Rule

• Corner Shape: The box corners are round. The radius of the corners should be
about two em spaces.
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Because an interleaving box is both associative and commutative, we can use a
convention to compactly depict a large number of interleaved boxes. The convention
is show as Figure 38. Figure 38(a) shows the indexed interleaving convention while
Figure 38(b) shows a convention that uses associativity to simplify an enumeration of
interleaved boxes.
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. .
 .

. .
 .
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Pi

J
P1

P2

Pk

Pk−1

Pk

P2

P1

(b)(a)
i ∈ J = {1, 2, ..., k}

Figure 38: Indexed Interleaving Convention

• Diagram Symbols: An indexed interleaving box has a double line separating its
two process regions.

B.2.2 Parallel

GSPML has only one form of parallel box. This parallel box is based on the CSP
interleaving parallel operator. Parallel boxes synchronize via an interface set. Figure
39 defines the transition rule for interface parallel. Figure 39(a) shows that events from
the interface set happen in both processes at the same time. If either box contained in
a parallel box terminates then the entire parallel box terminates. Figure 39(b) and (c)
show that a parallel box acts just like an interleaving box, for events not in the interface
set.

• Corner Shape: The box corners are round. The radius of the corners should be
about two em spaces.
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Figure 39: Parallel Transition Rule
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• Diagram Symbols: The box will have an interface port symbol. The interface
port symbol should be between two and three em spaces high and leave at least
one em space around either end of the interface set name. Synchronization lines
may be drawn between the event symbols of shared events. A synchronization
line is drawn as a single dashed line that connects two or more events, all of
which have the same name. Abstract synchronization lines may be used but will
not connect event symbols.

• Text Symbols: The box will have an interface set name or specification. Each
synchronization line may have the associated event name placed near it.

• Placement: The interface set specification will be placed inside the interface port
symbol. The interface port symbol will be placed on the boundary between the
two process regions. A synchronization line must be drawn to pass through the
applicable interface port symbol.

Because indexed parallel is also commutative and associative, across an identical
interface set, we define an indexed parallel convention. This is shown in Figure 40
where the interface port symbol is placed on a double line separating the two process
regions.

• Containment:The upper process region contains the index set specification and
the lower process region contains a box with a parameterized name relating to
the index set specification.

• Regions: The box will have two process regions

• Diagram Symbols: An indexed parallel box has a double line separating its two
process regions. The box will have an interface port symbol. The interface port
symbol should be between two and three em spaces high and leave at least one
em space around either end of the interface set name. Synchronization lines may
be drawn between the event symbols of shared events. A synchronization line is
drawn as a single dashed line that connects two or more events, all of which have
the same name. Abstract synchronization lines will not connect event symbols.

• Placement: The interface port symbol will be placed on the boundary between
the two process regions. A synchronization line must be drawn to pass through
the applicable interface port symbol.
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Figure 40: Indexed Parallel Convention
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B.3 Abstraction
It is also useful to have some explicit abstraction operators: hiding and renaming.
Abstraction by hiding allows us to conceal synchronization outside the interface of a
parallel combination. Hiding is also useful in specifying security for some kinds of pro-
tocols. Renaming supports re-use of box descriptions and simplifies the presentation
of complex models.

B.3.1 Hiding

Hiding removes events from the interface of a process; it makes them internal events
to any box enclosing the hiding box. Inside the hiding box, the events are not internal
events. Figure 41 shows the box symbol for hiding and defines the Hiding Transition
Rule. Figure 41(a) shows the meaning of hiding, for events that are hidden and Fig-
ure 41(c) shows the meaning for events that are not hidden. Figure 41(b) shows the
meaning of hiding events that are nested.

• Corner Shape: The corners of a hiding box are rectangular

• Diagram Symbols: A hiding box has one or more hiding strikethrough symbols,
as depicted in Figure 41.

• Placement: Each hiding strikethrough diagram symbol must be drawn on the left
boundary of the hiding box. Synchronization lines must be drawn connecting the
strikethrough symbols to the event symbols for the events that are to be hidden,
for concrete hiding, or terminating inside the process region of a box, for abstract
hiding.

B.3.2 Renaming

Figure 42 depicts the rule for forward renaming. Forward renaming is depicted as a
rectangular box drawn with dashed lines, with renaming symbols on its left boundary.
Renaming symbols are circles of the same size as event symbols, but drawn with a
dashed line. Synchronization lines for the renamed events are drawn from the renamed
event through the renaming symbol. Figure 46 at the end of this report shows exam-
ples of renaming symbols. The dashed line used to draw the renaming box and its
renaming symbols serves as a reminder that synchronization is likely to be affected,
since that is the most frequent use of renaming. Forward renaming is accomplished
by applying a renaming function f to event names a. The function application, for
example f(a) = x, is shown next to the renaming symbol or on the affected synchro-
nization line. The renaming function is then explicitly defined for each event name that
is affected. For events that are not renamed, the meaning is the identity function. The
renaming function f must be a total function on events, including hidden events τ and
terminations X. Termination cannot be renamed and renaming may not be used to hide
events; external events must be renamed to external events.

• Diagram Symbols: A forward renaming box has one or more renaming symbols
drawn on its left boundary. Renaming symbols are the same size and shape as
event symbols, but drawn with a dashed line.
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Figure 41: Hiding Transition Rule
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Figure 42: Forward Renaming Transition Rule

• Text Symbols:Synchronization lines that are affected by the renaming function
must show the function application to the event name, as a label on the synchro-
nization line. An example of this is shown in Figure 46.

• Placement: Renaming symbols must be placed on the left boundary of the re-
naming box. Affected synchronization lines must be drawn through the appro-
priate renaming symbol.

Figure 43 shows the transition rule for backward renaming. Backward renaming is
depicted as a rectangular box drawn with dashed lines, using renaming symbols. The
dashed line serves as a reminder that synchronization is likely to be affected, since that
is the most frequent use of renaming.

A function f is defined but its inverse f−1 is applied to the box and event names.
Backward renaming where f is bijective is the same as forward renaming. Affected
synchronization lines are labeled with the function rule that applies to the event con-
nected by the synchronization line.

When the inverse renaming function f is many-to-one, then backward renaming
expands the interface of the box being renamed. That is, when the box named f(P )
can perform the event named a then the renamed box f−1(P ) can perform any of the
events that map to event a.

Visually, backward renaming is depicted in the same way as forward renaming.
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B.4 Flow Control
(Sequential) flow control supports modeling of transfer of control from one process
to another as a result of the first process no longer executing, that is, the first process
box is replaced by a second process box. The replacement may happen after normal
termination of the first box or it may happen as a result of the first box being interrupted.

B.4.1 Sequential Composition

Sequential composition models the sequential transfer of control from a preceding pro-
cess box P to a succeeding process box R, as shown by the transition rule in Figure 44.
Figure 44(a) shows the transition for events other than X and 44(b) shows the transition
for X.

P
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µ
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R

Q
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X

Q

R

P
τ

R

Figure 44: Sequential Composition Transition Rule

• Diagram Symbols: Sequential composition is denoted by a sequential composi-
tion diagram symbol. The sequential composition diagram symbol is a solid or
filled circle of the same size as an event symbol

• Placement: The preceding box is draw above the succeeding box, as shown in
44. The sequential composition symbol should be outside the first box touching
the bottom of the box. The top of the succeeding box should touch the sequential
composition symbol.

B.4.2 Interrupt

Interrupt composition supports the modeling of arbitrary transfer of control from a pre-
ceding process to a succeeding one. This arbitrary transfer can model an interrupt in
a protocol or it can be used to model fault events. With this construction, the inter-
rupt takes place on the first visible event of the succeeding box. Figure 45 shows the

54



µ

µ

(a) µ 6= X

Q

R

QP

R

P

X

X

τ

τ

a

a

(b)

Q

QP

R

P

(c)

S

S

QP

R

R

(d)

S

SP

R

R

Figure 45: Interrupt Transition Rule

four-part transition rule for interrupt composition. Figure 45(a) gives the meaning of
transitions where the preceding box has an event other than X and Figure 45(b) gives
the meaning of a normal termination event X in the preceding box. Figure 45(c) shows
how the succeeding or interrupting process can make progress via hidden transitions,
without triggering an interruption. Figure 45(d) defines the meaning of an actual inter-
ruption.

• Diagram Symbols: Interrupt composition is denoted by an interrupt composition
diagram symbol. The interrupt composition diagram symbol is an open or un-
filled equilateral triangle. Each side of the interrupt composition symbol should
be between one and two ex spaces long.

• Placement: The preceding box is draw above the succeeding box, as shown in
44. The interrupt composition symbol should be outside the first box touching
the bottom of the box, with a vertex as shown in Figure 45. The top of the
succeeding box should touch the lower edge of the interrupt composition symbol.
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C Dolev-Yao Model of Yahalom Security Protocol
The diagram on the following page is a GSPML model of the Yahalom protocol with
a Dolev-Yao intruder. The single diagram defines all possible interactions between
multiple concurrent runs of the protocol and the intruder, including possible replay and
interleaving attacks. This GSPML model is explained in detailed by McDermott [1].
It is repeated here, with a brief summary, as a convenient example of how GSPML
satisfies all of our criteria for visual security protocol modeling.

The basic Dolev-Yao structure of the model is shown by the outermost parallel
box named Yahalom. The principals are represented by the boxes Alice, Bob, and
Jeeves. All communications between the principals is routed through the interface port
of the Yahalom box to the intruder Yves. The intruder Yves is represented as a external
choice box that uses recursion to copy every message of every run of the protocol,
with the option of relaying either the proper message, any message previously seen,
or an arbitrary bogus message. Both Alice and Bob use interleaving boxes to model
their ability to act simultaneously in either the protocol initiator or responder roles, in
distinct protocol runs.

The model achieves synchronization while retaining meaningful names for compo-
nents. It accomplishes this through renaming. A renaming function f is used to rename
the send and receive components of events in the principals, to take and fake, re-
spectively. The event names take and fake serve as intermediate channels through the
interface between the protocol principals and the intruder. On the intruder’s side of the
interface, intruder events learn and say are mapped to take and fake. The mapping
here also includes the source and destination address of each event x.y, to model the
intruder’s use of eavesdropping and replay. The source and destination become simply
a chunk of data to be decoded, rearranged, and manipulated by the intruder as part of
the messages it sees and saves.
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Figure 46: Yahalom: The Complete Protocol Model
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